Available from Reaxense
This protein is integrated into the Receptor.AI ecosystem as a prospective target with high therapeutic potential. We performed a comprehensive characterization of T-box transcription factor TBX2 including:
1. LLM-powered literature research
Our custom-tailored LLM extracted and formalized all relevant information about the protein from a large set of structured and unstructured data sources and stored it in the form of a Knowledge Graph. This comprehensive analysis allowed us to gain insight into T-box transcription factor TBX2 therapeutic significance, existing small molecule ligands, relevant off-targets, and protein-protein interactions.
Fig. 1. Preliminary target research workflow
2. AI-Driven Conformational Ensemble Generation
Starting from the initial protein structure, we employed advanced AI algorithms to predict alternative functional states of T-box transcription factor TBX2, including large-scale conformational changes along "soft" collective coordinates. Through molecular simulations with AI-enhanced sampling and trajectory clustering, we explored the broad conformational space of the protein and identified its representative structures. Utilizing diffusion-based AI models and active learning AutoML, we generated a statistically robust ensemble of equilibrium protein conformations that capture the receptor's full dynamic behavior, providing a robust foundation for accurate structure-based drug design.
Fig. 2. AI-powered molecular dynamics simulations workflow
3. Binding pockets identification and characterization
We employed the AI-based pocket prediction module to discover orthosteric, allosteric, hidden, and cryptic binding pockets on the protein’s surface. Our technique integrates the LLM-driven literature search and structure-aware ensemble-based pocket detection algorithm that utilizes previously established protein dynamics. Tentative pockets are then subject to AI scoring and ranking with simultaneous detection of false positives. In the final step, the AI model assesses the druggability of each pocket enabling a comprehensive selection of the most promising pockets for further targeting.
Fig. 3. AI-based binding pocket detection workflow
4. AI-Powered Virtual Screening
Our ecosystem is equipped to perform AI-driven virtual screening on T-box transcription factor TBX2. With access to a vast chemical space and cutting-edge AI docking algorithms, we can rapidly and reliably predict the most promising, novel, diverse, potent, and safe small molecule ligands of T-box transcription factor TBX2. This approach allows us to achieve an excellent hit rate and to identify compounds ready for advanced lead discovery and optimization.
Fig. 4. The screening workflow of Receptor.AI
Receptor.AI, in partnership with Reaxense, developed a next-generation technology for on-demand focused library design to enable extensive target exploration.
The focused library for T-box transcription factor TBX2 includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.
T-box transcription factor TBX2
partner:
Reaxense
upacc:
Q13207
UPID:
TBX2_HUMAN
Alternative names:
-
Alternative UPACC:
Q13207; Q16424; Q7Z647
Background:
T-box transcription factor TBX2 plays a pivotal role in various biological processes, including transcriptional repression and activation, cardiac development, limb pattern formation, and melanocyte proliferation. It binds to specific DNA sequences, modulating the expression of numerous genes involved in critical developmental pathways.
Therapeutic significance:
The protein is implicated in Vertebral anomalies and variable endocrine and T-cell dysfunction, a syndrome with skeletal, immunodeficiency, endocrine, and cardiac anomalies. Understanding the role of T-box transcription factor TBX2 could open doors to potential therapeutic strategies for this complex condition.