Available from Reaxense
This protein is integrated into the Receptor.AI ecosystem as a prospective target with high therapeutic potential. We performed a comprehensive characterization of NACHT, LRR and PYD domains-containing protein 9 including:
1. LLM-powered literature research
Our custom-tailored LLM extracted and formalized all relevant information about the protein from a large set of structured and unstructured data sources and stored it in the form of a Knowledge Graph. This comprehensive analysis allowed us to gain insight into NACHT, LRR and PYD domains-containing protein 9 therapeutic significance, existing small molecule ligands, relevant off-targets, and protein-protein interactions.
Fig. 1. Preliminary target research workflow
2. AI-Driven Conformational Ensemble Generation
Starting from the initial protein structure, we employed advanced AI algorithms to predict alternative functional states of NACHT, LRR and PYD domains-containing protein 9, including large-scale conformational changes along "soft" collective coordinates. Through molecular simulations with AI-enhanced sampling and trajectory clustering, we explored the broad conformational space of the protein and identified its representative structures. Utilizing diffusion-based AI models and active learning AutoML, we generated a statistically robust ensemble of equilibrium protein conformations that capture the receptor's full dynamic behavior, providing a robust foundation for accurate structure-based drug design.
Fig. 2. AI-powered molecular dynamics simulations workflow
3. Binding pockets identification and characterization
We employed the AI-based pocket prediction module to discover orthosteric, allosteric, hidden, and cryptic binding pockets on the protein’s surface. Our technique integrates the LLM-driven literature search and structure-aware ensemble-based pocket detection algorithm that utilizes previously established protein dynamics. Tentative pockets are then subject to AI scoring and ranking with simultaneous detection of false positives. In the final step, the AI model assesses the druggability of each pocket enabling a comprehensive selection of the most promising pockets for further targeting.
Fig. 3. AI-based binding pocket detection workflow
4. AI-Powered Virtual Screening
Our ecosystem is equipped to perform AI-driven virtual screening on NACHT, LRR and PYD domains-containing protein 9. With access to a vast chemical space and cutting-edge AI docking algorithms, we can rapidly and reliably predict the most promising, novel, diverse, potent, and safe small molecule ligands of NACHT, LRR and PYD domains-containing protein 9. This approach allows us to achieve an excellent hit rate and to identify compounds ready for advanced lead discovery and optimization.
Fig. 4. The screening workflow of Receptor.AI
Receptor.AI, in partnership with Reaxense, developed a next-generation technology for on-demand focused library design to enable extensive target exploration.
The focused library for NACHT, LRR and PYD domains-containing protein 9 includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.
NACHT, LRR and PYD domains-containing protein 9
partner:
Reaxense
upacc:
Q7RTR0
UPID:
NLRP9_HUMAN
Alternative names:
Nucleotide-binding oligomerization domain protein 6; PYRIN and NACHT-containing protein 12
Alternative UPACC:
Q7RTR0; B2RN12; Q86W27
Background:
NACHT, LRR, and PYD domains-containing protein 9 (NLRP9) is pivotal in innate immunity, acting as the sensor component of the NLRP9 inflammasome. It responds to pathogens like rotavirus by forming an inflammasome complex with NLRP9, PYCARD, and CASP1, leading to the activation of CASP1 and the release of inflammatory cytokines IL1B and IL18. This process not only stimulates inflammatory responses but can also trigger pyroptosis, a form of programmed cell death. The activation of NLRP9 inflammasome is believed to be initiated by DHX9's interaction with viral dsRNA, showing a preference for short dsRNA segments.
Therapeutic significance:
Understanding the role of NACHT, LRR, and PYD domains-containing protein 9 could open doors to potential therapeutic strategies.