Available from Reaxense
This protein is integrated into the Receptor.AI ecosystem as a prospective target with high therapeutic potential. We performed a comprehensive characterization of Exosome complex component CSL4 including:
1. LLM-powered literature research
Our custom-tailored LLM extracted and formalized all relevant information about the protein from a large set of structured and unstructured data sources and stored it in the form of a Knowledge Graph. This comprehensive analysis allowed us to gain insight into Exosome complex component CSL4 therapeutic significance, existing small molecule ligands, relevant off-targets, and protein-protein interactions.
Fig. 1. Preliminary target research workflow
2. AI-Driven Conformational Ensemble Generation
Starting from the initial protein structure, we employed advanced AI algorithms to predict alternative functional states of Exosome complex component CSL4, including large-scale conformational changes along "soft" collective coordinates. Through molecular simulations with AI-enhanced sampling and trajectory clustering, we explored the broad conformational space of the protein and identified its representative structures. Utilizing diffusion-based AI models and active learning AutoML, we generated a statistically robust ensemble of equilibrium protein conformations that capture the receptor's full dynamic behavior, providing a robust foundation for accurate structure-based drug design.
Fig. 2. AI-powered molecular dynamics simulations workflow
3. Binding pockets identification and characterization
We employed the AI-based pocket prediction module to discover orthosteric, allosteric, hidden, and cryptic binding pockets on the protein’s surface. Our technique integrates the LLM-driven literature search and structure-aware ensemble-based pocket detection algorithm that utilizes previously established protein dynamics. Tentative pockets are then subject to AI scoring and ranking with simultaneous detection of false positives. In the final step, the AI model assesses the druggability of each pocket enabling a comprehensive selection of the most promising pockets for further targeting.
Fig. 3. AI-based binding pocket detection workflow
4. AI-Powered Virtual Screening
Our ecosystem is equipped to perform AI-driven virtual screening on Exosome complex component CSL4. With access to a vast chemical space and cutting-edge AI docking algorithms, we can rapidly and reliably predict the most promising, novel, diverse, potent, and safe small molecule ligands of Exosome complex component CSL4. This approach allows us to achieve an excellent hit rate and to identify compounds ready for advanced lead discovery and optimization.
Fig. 4. The screening workflow of Receptor.AI
Receptor.AI, in partnership with Reaxense, developed a next-generation technology for on-demand focused library design to enable extensive target exploration.
The focused library for Exosome complex component CSL4 includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.
Exosome complex component CSL4
partner:
Reaxense
upacc:
Q9Y3B2
UPID:
EXOS1_HUMAN
Alternative names:
Exosome component 1
Alternative UPACC:
Q9Y3B2; B2R9B3; Q5JTH3
Background:
Exosome complex component CSL4, also known as Exosome component 1, plays a crucial role in RNA processing and degradation. It is a non-catalytic component of the RNA exosome complex, involved in the maturation of stable RNA species, elimination of RNA processing by-products, and degradation of unstable mRNAs. Its activities span both nuclear and cytoplasmic realms, impacting gene expression and RNA surveillance pathways.
Therapeutic significance:
Given its involvement in pontocerebellar hypoplasia 1F, a disorder marked by significant brain structural defects, understanding the role of Exosome complex component CSL4 could open doors to potential therapeutic strategies. Its critical function in RNA metabolism suggests it could be a target for interventions aimed at mitigating the effects of this debilitating disease.